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We have developed a numerical code to investigate steady state 
neutral-beam-driven, ohmic and bootstrap currents which are consis- 
tent with MHD equilibrium. The code can describe the effects of mirror 
trapping, energy diffusion, and bounce motion of fast ions on the 
beam-driven current. The bootstrap current is evaluated for multi- 
species ions including impurity and unthermalized fast ions. An iterative 
algorithm is employed to obtain a self-consistent current and MHD 
equilibrium. MHD stability for the converged solution can also be 
investigated with the code. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

One of the most important problems for the design of 
steady-state tokamak reactors is the need for methods to 
drive plasma current non-inductively. Recent observations 
of substantial plasma-current driven by neutral beam injec- 
tion Cl, 2,3] and lower hybrid waves [4,5] suggest the 
possible development of steady-state tokamak reactors. The 
experimental detection of considerable neoclassical current 
in TFTR and JET [3,6] can also reduce the additional 
power requirements for the current drive. These experimen- 
tal results motivate us to analyse 2D MHD equilibrium 
with these non-inductive plasma currents. These currents 
and the MHD equilibrium, however, strongly depend on 
each other. Therefore, for an accurate treatment, a self-con- 
sistent analysis of 2D MHD equilibrium and the current 
distribution is necessary. 

By applying current-drive techniques with NBI or RF 
waves, we can control not only the total plasma current but 
also the current profile. Besides the self-consistent MHD 
equilibrium, the dependence of MHD stability on the 
current profile is of great importance. Accordingly, we have 
developed a code, ACCOME (analyzer for current drive 
consistent with MHD equilibrium), version I. ACCOME 

employs an iterative method to deduce non-inductive 
currents which are consistent with MHD equilibrium. At 
the final step of the computation, the MHD stability for a 
resultant current profile is investigated analytically. 

In the present paper, some details of the current drive by 
neutral beam injection and bootstrap effects are described in 
Section 2. Brief explanations of the MHD equilibrium and 
stability codes used in ACCOME are presented in Section 3. 
The iterative algorithm of ACCOME is explained in 
Section 4. Results of typical application of ACCOME 
to JT-60U are shown in Section 5, and the conclusions of 
the present work are summarized in the last section of this 
paper. 

2. PLASMA CURRENT ANALYSIS 

2.1. Beam-Driven Current 

The current density driven by neutral beam injection can 
be simply given by 

(1) 

where jr is the fast-ion current density, $ the poloidal flux 
function divided by 2~, and the angular brackets denote flux 
surface averages. The ratio of the beam-driven current to the 
fast-ion current r is approximately given by [7] 

!.-1-$(1-g,), 
err 

(2) 

where g, is the trapped electron correction ( N 1.4 &), Z, 
is the charge number of fast ions, Z,, is the effective charge 
number, and E is the inverse aspect ratio. For calculation 
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of the MHD equilibrium, we need the current density hand, the conventional treatment gives a large amount of 
averaged over each flux surface, that is, erroneous current with the same pitch. The effect of energy 

diffusion also becomes important as the ratio of beam 
(jfl”B> <j’B> r 

B, =B,’ 
(3) 

energy to plasma temperature is reduced. Neither of these 
effects are taken into consideration in the conventional 
analytical codes. Accordingly, we have developed an 

where B and B, are the local and reference toroidal magnetic improved semi-analytical code to derive the distribution 
fields. The current density ( jfB)/B, in Eq. (3) can be found function in Eq. (4) [9]. In general, variables off can be 
from separated as 

(jfB) 5 
-=eZf 

B, i s +h CO? II/) 
0 -1 

f(V> CO? ‘4) = St+) z,(ll/) c Q”(4 II/) c,(io, $1, (6) 
n 

x WV, Co, $1 v3 4, dv, (4) where s is the volume source of fast ions and z, is the slowing 
down time. In the velocity region v < vB, a,(~, $) in Eq. (6) 

wheref(v, lo, II/) is the distribution function of fast ions in is simply given by 
steady state, co = v,,,/v, and vllo is the velocity of fast ions 
parallel to the magnetic field line measured in the midplane. 
The function H(v, co, $) in Eq. (4) is defined as 

(5) where vB = J%?&$, E, is the injected beam energy, m., 
the mass of beam ions, and v,(G) the local critical velocity; 

where f dl denotes the integration over a bounce motion of 
fast ions. 

We have used two methods to solve for the distribution 
function of the fast ions: a method employing an orbit- 
following Monte-Carlo (OFMC) technique and one which 
uses analytic eigenfunctions of the Fokker-Planck equa- 
tion. The former can precisely describe the beam-driven 
current, taking into account the effect of loss orbits and the 
charge-exchange process of fast ions while slowing down. 
This method, however, requires very long CPU time. For 
example, it takes about 2 h to analyze the beam-driven 
current for 2000 test particles with beam energy of the 
order 1 MeV on a FACOM M780 computer (speed 2: 
10 MFLOPS [Linpack]). As is described in the last section, 
in order to obtain an MHD equilibrium which is consistent 
with the beam-driven current, there is no alternative but to 
choose an iterative method. Usually about 5-10 iterations 
are necessary to reach a self-consistent current and MHD 
equilibrium. Therefore, it is almost impossible to employ an 
OFMC method for this kind of calculation. On the other 

B denotes the type of ion species of bulk plasma, In AB the 
Coulomb logarithm for particles “/I” and ;1, the nth eigen- 
value described later. 

In the velocity region o > vB, the energy diffusion term 
derived by Gaffey [lo] is employed; that is, 

1 
a,(v) = - 2( 1 + vyv;, 0-v~ 

v;+v: T~/EB + (TilE,)(VjlVi) VB 1 ’ 
(8) 

The bounce-averaged differential equation for c, in 
Eq. (6) can be written as [ 111 

hand, the method which uses analytic eigenfunctions of the 1 
Fokker-Planck equation requires a very short CPU time, d (l-~~)Qc;,,;b)~]+/:.c.=O. 

WC,> i;) 4, L 
(9) 

(about 10-20 s) with the same computer. The conventional 
0 

analytical treatments [7, 81, however, have some problems where 
in the description of fast-ion current. Results from an 
OFMC code [9] have indicated that the effect of particle 

i’ 2 
R(;o,i:)=$ f [( )I , trapping on beam-driven current is of great importance, 0 

especially for fast ions with initial pitch (v,,~/v) near lb, 
where [h is the pitch of the barley-trapped particles. The Q(lo, ;h,=;#)2], 

0 

OFMC code shows that the current driven by fast ions 
with initial pitch less than (A is almost zero. On the other K and E are the complete elliptic integral of the first and the 
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second kind, respectively. The effect of bounce motion of 
fast ions as well as the effect of particle trapping are taken 
into consideration in Eq. (9). We derive these eigenfunc- 
tions c,($) and eigenvalues i,, numerically by adopting a 
variational method [9]. 

Another important calculation for obtaining beam-driven 
current is the fast-ion source term s($) in Eq. (6). 
ACCOME can treat parallel and elliptical cross-sectional 
neutral beams with horizontal and vertical radii a, and 6,. 
Here we introduce polar coordinates 8, and 

rB- - Jx’ + y2ailbi, 

where (x, y) are the horizontal and vertical coordinates in 
the beam cross section. The local fast-ion source term can be 
derived by calculating the total fraction of neutral beams 
trapped in a plasma S. The latter is given by 

ne($) 0s dL 1 
x net@) OsrB drB doB dL,, (10) 

where LB is the beam path length, L,,, is the maximum 
beam path length which intersects the plasma column, a, is 
the neutral beam radius, ykj is the density fraction of thejth 
neutral beam with energy of E,/k, E, is the primary beam 
energy, gs is the stopping cross section, and w(rg, 0,) is the 
normalized distribution of beam density defined by 

w(rg, eB) rB dr, de, = 1.0. 

The stopping cross section ~~ is given by the numerical tit by 
Janev et al. [12]. Here we consider a neutral beam with 
beam-density distribution of the form 

1.582 
w(rBv eB) = na2 -exp[l - (rB/aB)21. 

B 
(11) 

Introducing new variables 

rk = ,/1.582[ 1 - exp( -(rB/aB)*)] 

e; = eB/h 

L’B = LB/L,nax 

and, substituting Eq. (11) into Eq. (lo), we obtain 

x n,(t)) osrb dri de; dLk. 

These integrals are evaluated with a Monte-Carlo integra- 
tion method. Six uniform random numbers corresponding 
to rB, 8B, LB, beam number, beam ion species k, and co- 
injection fraction are generated for every sampling point. 
The calculation of Eq. (4) is executed for every test particle. 
Consequently, the total number of test particles is limited 
within about 2000, due to the long computational time for 
the current drive. 

The beam-driven current derived from the new semi- 
analytical treatment is compared with that from the OFMC 
code [9]. Both results agree very well if the effect of the 
charge-exchange loss of fast ions is not taken into considera- 
tion. The difference between the total currents with and 
without the charge-exchange process is only 334% in a 
reactor-grade tokamak. 

2.2. Bootstrap Current 

In ACCOME, we numerically evaluate the bootstrap 
current for multi-species ions, including fast ions, on the 
basis of the Hirshman-Sigmar moment approach of the 
neoclassical theory [13]. 

The particle and heat flow equations parallel to the 
magnetic field are expressed by the coupled matrix equa- 
tions, 

<B.u,,,) +B. VI, 

-2/5p,.(B.g,,,)+B.V,, 
2 (13) 

where ~111~ qllmy and pm are the parallel flow velocity, the 
parallel heat flow, and pressure of the particle of specie “u,” 
respectively. The coefficient l$fi describes the friction 
between particles “LX” and “r and .D; describes the viscosity 
coefficient for the particle type “GI,” respectively. The angular 
bracket denotes the quantity averaged over a magnetic sur- 
face. V,, and - 5pJ2 . V,, are poloidal components of per- 
pendicular particle flow uLa and heat flow qlz. For particles 
with Maxwellian velocity distribution, friction and viscosity 
coefficients are explicitly derived by Hirshman and Sigmar 
[13]. We employ an energy-partitioning integral formula 
for viscosity coefficients in the banana-plateau regime with 
numerical factor of 2.48 proposed by Kim et al. [14], which 
gives a good agreement with the Hinton-Hazeltine formula- 
tion 1151, in the limit of the large aspect ratio with Zen= 1. 
For simplicity in the calculation, we employ an analytical 
fitting function for the trapped particle fractionf, [16]. 

In addition to Maxwellian particles, we include the effect 
of fast ions with an isotropic velocity distribution of the 
form 

(0 < 0 d OS), 



2D MHD EQUILIBBIUM WITH NON-INDUCTIVE CURRENT 335 

where n,-is the fast ion density and r,,, is the thermalization 
time. The first-order distribution function with respect to 
the Larmor radius can be expressed by 

where 

p,, E, and Qf are the magnetic moment, the energy, and the 
Larmor frequency of fast ions, respectively. The velocity 
dependence of G is determined from the velocity moments of 
fast ions. The effective temperature profile of fast ions is 
much broader than their pressure profile in a usual situation 
and the fast-ion induced bootstrap current is considered to 
be mainly driven by pressure gradient. Therefore, in the 
present paper, we take into account only the parallel flow 
balance of fast ions and neglect the parallel heat flow 
balance. In this approximation, G is given by 

1 
G= Ff [(B 

fJm Pf 
.u,,r> -B- VI,], 

where 

and f, = 1 -f,. By using the approximation of vi < o < u,, 
the parallel momentum balance equation of fast ions is 

1 l%B.u,,,) - Wqf)) 
a=e,i 

=P$@.u,,,.) +B. VI,), (14) 

where friction and viscosity coefficients of the fast ion are 
expressed as 

Remaining coefficients, such as lfff and &, are set to be 
zero in our approximation. Above expressions are very 
similar to those derived by Hirshman and Sigmar for the 
evaluation of beam-driven current, where they used the first 
Legendre moment of the beam distribution function. 

The coupled matrix Eq. (13), including the fast ion 
Eq. (14) and its counterpart terms for Maxwellian particles, 
are solved numerically by a matrix inversion technique and 
the transport coefficients for bootstrap current, L’;, and L& 
(a = e, i, f ), are evaluated. Finally, the bootstrap current 
(J,, “. B) is calculated as 

(Jy.B) =xeano (u,,,.B) 
a 

(15) 

The effective temperature Tf is defined by Tf= pf/nr 
We note that Li2 =0 because of our approximation of 
neglecting the temperature gradient terms for fast ions. 

ACCOME has another option for the estimation of 
bootstrap current, that is, the banana-plateau expressions 
of Hinton and Hazeltine [ 151, in which the multi-ion 
plasma is replaced with a single ion of charge Zen. 

2.3. Ohmic Current 

The flux surface averaged Faraday’s law in a steady state 
tokamak can be written as 

(jfHB) =S% 
rl F&CR-=A (16) 

where F is the toroidal field function, R, is the geometric 
major radius, Vioop is the one-turn voltage, and q is the 
resistivity. We assume that the resistivity is only a function 
of I,+ and that the neoclassical effect is included [ 161. 

3. MHD EQUILIBRIUM AND 
STABILITY CHECK 

In order to save CPU time in computing the MHD equi- 
librium, ACCOME uses a very fast MHD equilibrium code 
which is called SELENE [17]. SELENE solves the 
Grad-Shafranov equation in cylindrical coordinates (R, Z) 
by using a combination of the DCR (double cyclic reduc- 
tion) method and the Green function method for prescribed 
values of p’ = dp/d$, (J. B), and marker points on the 
plasma surface. SELENE employs a rectangular domain in 
the (R, Z) space which is divided into 2” x 2” with equal 
spacing, where m and n are integers (typically m = n = 7). 
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The poloidal flux function $ is divided into the contribution 
from the plasma current, Ic/,,, and that from the poloidal coil 
currents, $,; that is, 

where 1: and #f: are the poloidal coil current and the 
poloidal flux function produced by unit coil current, respec- 
tively. Without the input data for poloidal coils, SELENE 
generates analytic solutions of $E that are linearly inde- 
pendent with each other. The basic calculation procedure of 
SELENE is: 

(1) At first, the toroidal plasma current density j, at 
each grid in the box is evaluated with a guessed value for II/. 

(2) The value of tip on the boundary of calculation 
domain is evaluated from the line integral along the plasma 
surface by using the Green function method. 

(3) At this moment, the total plasma currents evaluated 
by the surface integral of j, and the line integral of ]Vll//R] 
are adjusted to the prescribed value I, by multiplying 
(J. B) by the proper constant. 

(4) Then $, is solved by the DCR matrix inversion 
technique. 

(5) Finally, the total value of + at each grid is obtained 
by adding the contributions of $t, where coil currents Zf: are 
adjusted so that the plasma surface is through the 
prescribed marker points, such as the innermost/outermost 
minor radii, separatrix point, and so on, which are defined 
by the input data. 

These steps are repeated until II/ at each grid converges 
within an allowable error E,, : max ((II/y j - 11/y; ‘)/II/: j I < 
& eq, where i and j are the grid numbers. Typically, we set 
Eeq = 10-3. 

For the converged equilibrium, the code checks the 
stability of the infinite-n ideal ballooning mode and inter- 
change mode. For reference, tearing mode stabilities are 
also tested by evaluating cylindrical d’ for the obtained 
safety factor profile. 

4. CALCULATION PROCEDURE 

As is described in the last section, all the types of plasma 
current depend on the geometry of MHD equilibrium. On 
the other hand, the MHD equilibrium directly depends on 
those current profiles. Therefore, we employ an iterative 
procedure to obtain an MHD solution which is consistent 
with the computed plasma currents. 

In ACCOME, plasma densities and temperatures are 
assumed to be given by fixed functional forms of a nor- 
malized effective minor radius p. The variable p is defined as 
p=dL)Iv,, h w ere V($) is the plasma volume within $ 

and Vt,, is the value of V at the plasma surface. Conse- 
quently, the pressure of bulk plasma pth is also given by a 
function of p. In the presence of tritons and deuterons, the 
pressure of unthermalized alpha particles p’ is calculated by 
using an analytical solution of the Fokker-Planck equation 
and the local fusion reaction rate. 

The MHD equilibrium is solved with a restriction that 
the total plasma current I, is kept constant at every iteration 
step. ACCOME has two options to keep the total plasma 
current constant: one is to regulate one-turn voltage V,OOp 
with given neutral-beam power input P,,, and the other is 
to regulate P,,, with fixed V,OOp. 

From the geometric properties of the desired solution, i.e., 
plasma elongation K, triangularity 6, major radius R,, 
minor radius a, and plasma current I,, we set up a Solov’ev 
model equilibrium. With the old MHD equilibrium of the 
ith iteration $i, the flux-surface-averaged beam-driven 
current (j{B)i, (j;“B ) i, bootstrap current (jr B)i, and 
ohmic current (jr” B)i are calculated. During the calcula- 
tion process for beam-driven current, the additional 
pressure due to unthermalized fast ions p.’ and the fast-ion 
density nf are also calculated. In order to keep the plasma 
neutral in the presence of the injected fast ions, the electron 
density is reset at every iteration step as 

n:h(P) = nP I fixed (PI + 2%(P) +-q/(P). 

Since we employ a Monte-Carlo method to evaluate the 
birth profile of fast ions, the solution of (j;” B)i involves 
Monte-Carlo noise. In order to reduce the error bar, we use 
an averaging technique in the iterative procedure. The 
beam-driven current at the ith iteration is given as 

where [X] i denotes 

$Xj. 
I 

The same technique is adapted to the bootstrap current and 
the total plasma pressure 

[(j~SB)lj=f <j~sB)i+~ C(j~B)li-,, 

Ipli=fpi+ y CPli-1, 

where p = pth + pa + p< Then the total plasma current is 
given by 

(j,,B)i= [(j:DB)li+ C<j;SB)lj+ (jfHB>i. 
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From these quantities and the old values of the toroidal field 
function Fi and ( B2)i, we can compute the first derivative 
of the plasma pressure [p]: and the quantity 

FiFl= -&F~[P]:+ Fi(j,,B)i)/(B2)i (16) 

and use them to solve the Grad-Shafranov equation 

A*$,+, = -poR2[p]; - FiF;i. (17) 

All components of plasma current are calculated again with 
the new MHD equilibrium. These calculation of plasma 
current and MHD equilibrium are executed iteratively until 
the value of (j,, B) at each radial mesh point is converged 
well; that is, 

l(<j,,B>i- <j,~B)i-,Y<j,,B)il <E, 

pth (P) =ne (P)T, (P)+ni (p)Ti (P) 
Solov’ev model equilibrium 

(I, < B2 > , PM). etc., 
1=1 

FiF( =-%( F~[PI~+F~c j,,B>i )/<BZ>~ 
[PI ’ 

FIG. 1. Calculation procedure to obtain non-inductively driven 
currents which are consistent with MHD equilibrium. 

where E, is usually set at 5 lo-*. With the converged values 
of (j,, B), the respective toroidal current densities are given 
by 

where A is the area of poloidal cross section within II/. 
Finally, MHD stability for the converged current profile are 
investigated with the method described in the last sub- 
section. The above mentioned calculation procedure is 
summarized in Fig. 1. 

5. APPLICATION RESULTS 

Applications of ACCOME have been made for calcula- 
tion parameters appropriate to JT-60U which are sum- 
marized in Table I. The geometry of neutral beam line is 
shown in Fig. 2. Neutral deuteron beams are injected 
tangentially with tangency radius R,,, = 2.7 m and energy 
E, = 400 keV without notice. The center line of the beam is 
contained in the midplane. In all the subsections except 
Section 5.2, we choose the option of NBI power regulation 
to keep the total plasma current constant without ohmic 
current ( V,oop = 0.0). 

TABLE I 

Calcultion Parameters 

Major radius 
Minor radius 
Toroidal field 
Plasma temperature 

Plasma density 

Plasma current 
Ellipticity 
Triangularity 
Bulk ions 
Effective 2 
Charge number 

of impurity ion 

R,= 3.36 m 
a=l.Om 
B,= 4.3 T 
Teb)= ~ecdl -P2) 
T,(P) = T,,(l -d 
T,, = T,, = 10 keV 
n,(P) = %,(l - P2PS 
n,, = 10’s - 1.5 x 10zo me3 
I,(I,,,)= 2.4 - 3.6 MA 
!c= 1.54 
A =0.35 
Deuterons 
Z, = 2.0 (uniform) 
ZimD = 8.0 (oxygen) 
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EB=400keV 

R tan= 2.7m 

+ 
5 

R(m) 

FIG. 2. Geometry of neutral beam line in JT-60U. 

5.1. Check for the Iterative Algorithm 

In advance of the application, we have tested the 
convergence characteristic of the iterative algorithm of 
ACCOME. The poloidal-beta /?, value, which is a good 
measure of the plasma-current profile, is plotted against the 
iteration number Ni, in Fig. 3. The ratio of the neoclassical 
current to the total Zes/Ztot is also plotted. The convergence 

1 .5 ““““’ 0.5 

!-4 

I,,/~,,, \;0.4 

-0.3 ,” 

Qr ““I 
-0.1 

1 tot = 3MA 
0.5 I I I 1 I I I 8 1 0.0 

0 2 4 6 6 10 

Nit 
FIG. 3.. Poloidal beta and ratio of bootstrap current to the total 

against iteration number. 

i 

. . . . . . 
. . . . . . . . . . . N, t = 1 . ..’ . . . . . 

-N,,=3,6 / :. 
‘:, 

I,-.= 3MA 

FIG. 4. Convergence process of toroidal current density for iteration 
step TV,, = 1, 3,6, and 10. 

properties of the toroidal current density j, is shown in 
Fig, 4 for various iteration steps. It follows from those 
results shown in Figs. 3 and 4 that more than live iterations 
are necessary to obtain a plasma current profile which is 
consistent with MHD equilibrium. 

5.2. Effect of Particle Trapping and Energy Diffusion 

Effects of particle trapping (P.T.) and energy diffusion 
(E.D.) of fast ions on the beam driven current are 
investigated in the mode of one-turn voltage regulation with 
P NB, = 20 MW and for the volume-averaged density 
ii, 2~ 5.5 x 1Ol9 rnp3 (n,, = 8.0 x 1019 mp3). 

The radial distribution of beam-driven current calculated 
with both effects, j&P.T., E.D.), is shown in Fig. 5 by the 
solid curve. The distribution of beam-driven current 
without the effect of P.T., jBD(-, E.D.), is also shown by the 
dash-dotted curve. The degradation of current density by 
the effect of P.T. can be evaluated by 

[ jBD(-, E.D.) - j&P.T., E.D.)]/J’,,(P.T., E.D.). 

The above ratio becomes very large in the outer core region 
because the particle-trapping region (u,,~/o < ch) increases 
with the local inverse aspect ratio. For reference, the dis- 
tribution of beam-driven current obtained by an OFMC 
code is also shown in Fig. 5 by the dotted curve. The dis- 
tribution of the beam-driven current estimated by the 
improved semi-analytical model including both the effects 
of P.T. and E.D. agrees very well with that from an OFMC 
code. Figure 6 shows the total beam-driven current and the 
regulated loop voltage to drive Z,,, = 3MA against the 
injected beam energy E,. The solid curves show the results 
with both the effects of P.T. and E.D., the dash-dotted curves 
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- (P.T..E.D) 1 
Anal. 

0.0 -7 I I I I I 
0.0 0.2 0.4 0.6 O-6 1-O 

FIG. 5. Radial distribution of beam-driven current for Pm,, = 20 MW, 
Es = 400 keV and volume-averaged density A, = 5.5 x lOI m -‘. Result 
from the improved semi-analytical code with both effects of particle trap- 
ping and energy diffusion and the one with the effect of energy diffusion 
only are shown by (- ) and (- - -), respectively. Result from an 
orbit-following Monte-Carlo code is shown by (-----). 

those with the effect of E.D. only, and the dashed curves 
those with the effect of P.T. only. The degradation of beam- 
driven current by particle trapping is approximately 
proportional to r,,,/zfi (cc ln[ 1 + (EB/E,)3’2](T,/EB)3’2), 
where rfi is the collision time between fast ions and bulk 
ions. Therefore, the ratio of the beam-driven current 

2.0 

I tot = 3MA,T,, (=‘rio) z 1OkeV 

I I I I I ’ 100.0 
-(P.T..E.D.) 

---- (P.T., 1 .4- 
---, - F‘n, -.M c 60.0 

E, CkeV) 

FIG. 6. Total beam-driven current and regulated loop voltage to drive 
Ztot= 3 MA against beam energy En for volume-averaged density 
A, z 5.5 x lOI me3. The solid curves are the results with both effects of 
particle trapping (P.T.) and energy diffusion (E.D.), dash-dotted curves 
those with the effect of E.D. only and dashed curves those with the effect 
of P.T. only. 

calculated without the effect of P.T. to the one with both the 
effects of P.T. and E.D., Ii&-, E.D.)/Z&P.T., E.D.), 
becomes very large as E, decreases. Figure 6 shows that the 
ratio can exceed 2.0 for EB/Teo -C 10. It must be noted that 
the ratio is as large as 1.3 even for a higher E,/T,, = 40. 

As is shown in Eq. (8), the contribution of energy diffu- 
sion to the beam-driven current increases with Ti/EB and/or 
T,/Es. The ratio of the beam-driven current calculated with 
the effect of E.D. to the one without, Z,,(P.T., E.D.)/ 
Z,,(P.T., -), is about 1.4 for E,/T,,,, N 10 and becomes 
less than 1.05 for EB/T,o,io > 30. The effect of energy diffu- 
sion is also important for low Eg/T,o,io, but it is not as 
important as that of particle trapping. 

Figure 6 also shows that, due to the large difference 
between beam-driven currents with and without the effect of 
P.T., a substantial difference between respective loop 
voltages to drive Ztot = 3MA is estimated. These calculation 
results indicate that the effect of particle trapping on the 
beam driven current or the one-turn voltage is of great 
importance for detailed analysis of the experimental data. 

5.3. Bootstrap Current 

The injected neutral beam power PNs, necessary to drive 
full non-inductive plasma current has been investigated. In 
Fig. 7, the results are plotted against ti,, the volume- 
averaged plasma density, for various Z,,,. The solid and 
dotted curves are those with and without the contribution of 
unthermalized fast ions on the bootstrap current, respec- 

70 

60 

c -with BS current 
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FIG. 7. Neutral beam power to drive full non-inductive plasma 
current Ztot against volume-averaged plasma density for various Ii,,; the 
solid curves with the effect of unthermalii fast ions on the bootstrap 
current and the dotted curves without. 
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tively. The reduction of PNB, in the high fi, region is due to 
the increase of bootstrap current with /I,,. In the low density 
region, we can expect a high elliciency of beam-driven 
current because of the long slowing-down time. The shine- 
through of injected neutral beams, however, reduces the 
efficiency of beam deposition. These two conflicting effects 
cause the finite P,,, at low fi,. 

The ratios of Zss/Z,,, with the contribution of unther- 
malized fast ions to the neoclassical current, are shown in 
Fig. 8 for Ztot = 3.0 (closed circles) and 3.6MA (open circles). 
In spite of the differences in Itot, the ratios Zss/Z,,, for these 
two currents are approximately on the same curve. It must 
be noted that the linearity of the self-consistent Z,,/Z,,, with 
respect to BP is broken in both high /I, (/I, > 1.4) and low /I, 
(/I, < 0.4) regions. For reference, Zss/Z,,, with a fixed j($) 
profile is shown by the solid line in Fig. 8 and shows com- 
plete linearity with fi,. In general, the bootstrap current flat- 
ten the distribution of the safety factor q, especially in the 
high BP region where the bootstrap current dominates the 
total current. The ratio q(O)/q(O.95) for It,, = 3 MA is also 
shown by the dashed curve in Fig. 8. Theoretical predictions 
[ 13, 151 show that the local bootstrap current is increased 
with the local q. This non-linear effect breaks the linear 
dependence of ZBs on p, in the high /I, region. The /I, 
dependence of Zss/Zt,,t shown in Fig. 8 is investigated by 
changing n,. As is shown by the dotted curve, the fraction 
of the beta poloidal for unthermalized fast ions /I,f becomes 
very large in the low /I, region. Although a substantial frac- 

FIG. 8. Ratios of the bootstrap current Zas to the total current Zt,t 
against beta poloidal ~7, for Z,,, = 3 . 0 MA ( l ), and 3.6 MA (0). The solid 
line shows Zr,s/Zt,t for a given MHD equilibrium profile without iteration. 
The dashed, dotted, and dash-dotted curves show the indication of safety- 
factor proEle q(O)/q(O.95), the contribution of unthermahzed beam ions to 
the total beta poloidal zY,‘//~~ and the ratio of the volume averaged density 
of fast ions to the volume averaged electron density fir//A, for I,,, = 3.0 MA, 
respectively. 

-a 

P 

FIG. 9. Maximum stable pressure gradient for Mercier mode &M (dotted 
curve) as function of shear s and that of ballooning mode asAL (dashed 
curve) in (A). The solid curve in (A) is the c( - s curve for those pressure 
and safety-factor profiles shown in (B) and (C). 



tion of bootstrap current is driven by the unthermalized fast (2) The effect of particle trapping on the beam-driven 
ions (see Fig. 7), their contribution to the total bootstrap current is very important for low E,/T,. The effect exceeds 
current is much smaller than those by bulk plasma electrons 100% for EB/TeO < 10 and is about 30% for EB/TeO = 40. 

and ions. This implies that the effective fi, to drive neoclassi- The effect of energy diffusion is also important for low 
cal current is reduced in this region. Consequently, the EB/Teo,io, but not as important as that of particle trapping 
bootstrap current drops from the linear dependence on 8,. for high EJT,,,,,. 

For reference, the ratio of the volume-averaged density of 
fast ions to the volume-averaged electron density fi#i, for 

(3) NBI power to sustain plasma current without 

I,,, = 3 MA is also shown by the dash-dotted curve in Fig. 8. 
ohmic-power input is estimated. A substantial fraction of 
NBI power can be saved by the effect of unthermalized fast 
ions on the bootstrap current. 

5.4. MHD Stability (4) The bootstrap current is approximately propor- 
At the final stage of ACCOME, MHD stability of the tional to /I,,. The proportionality is broken in both high and 

converged plasma current profile is investigated. Typical low /J regions due to the nonlinear effect of bootstrap 
results are shown in Fig. 9 for calculation parameters 
I,,, = 3.0 MA and np,, = 6 x 1019 md3. Other parameters are 

current on q and the reduction of effective B, by unther- 
malized fast ions, respectively. 

as those summarized in Table I. The maximum stable 
pressure gradient for the Mercier mode ~1~ is shown by 
the dotted curve as a function of shear s and that of the ACKNOWLEDGMENTS 

ballooning mode asAL by the dashed in (A). The solid curve 
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